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1

Introduction

Magnetohydrodynamics (MHD) describes the macroscopic behavior of
electrically conducting fluids, notably of plasmas. However, in contrast to
what the name seems to indicate, work in MHD has usually little to do
with dynamics, or at least has had so in the past. In fact, most MHD
studies of plasmas deal with magnetostatic configurations. This is not
only a question of convenience — powerful mathematical methods have
been developed in magnetostatic equilibrium theory — but is also based on
fundamental properties of magnetized plasmas. While in hydrodynamics
of nonconducting fluids static configurations are boringly simple and
interesting phenomena are in general only caused by sufficiently rapid
fluid motions, conducting fluids are often confined by strong magnetic
fields for times which are long compared with typical flow decay times,
so that the effects of fluid dynamics are weak, giving rise to quasi-
static magnetic field configurations. Such configurations may appear in
a bewildering variety of shapes generated by the particular boundary
conditions, e.g. the external coils in laboratory experiments or the “foot
point” flux distributions in the solar photosphere, and their study is both
necessary and rewarding.

In addition to finding the appropriate equilibrium solutions one must
also determine their stability properties, since in the real world only stable
equilibria exist. Stability theory, however, often predicts instability for
equilibrium solutions which appear to describe experimentally observed
configurations quite well. What happens to these solutions if a weak per-
turbation is applied, do they merely relax into a neighboring equilibrium
or slightly oscillating state, thus effectively enlarging the class of realizable
equilibrium configurations? Such questions cannot be answered by linear
stability theory.

A further aspect is connected with the various types of disruptive
processes which are observed in laboratory and astrophysical plasmas to

1



2 1 Introduction

occur occasionally after a period of quiescent plasma behavior. According
to the conventional picture the configuration evolving because of slow
changes of the boundary conditions becomes unstable at a certain point. A
little reflection, however, shows that such an explanation is unsatisfactory
and insufficient. Instabilities are usually weak for conditions close to the
stability threshold, or marginal point, giving rise to a slow growth of
the unstable perturbation, which completely misses the rapid explosive
character of the observed process the instability is intended to explain. In
addition, as mentioned above, linear instability theory does not allow an
estimate of the final extent of the unstable dynamics. In particular, rapid
linear growth rates do not guarantee that a large amount of energy is
released. A somewhat more adequate approach to the problem of explosive
processes appears to be equilibrium bifurcation theory. In particular a
loss of equilibrium, called catastrophe, is often associated with the onset
of rapid dynamics. However, a catastrophe usually occurs only within
a certain equilibrium class, such that the system may still escape into
a neighboring equilibrium state belonging to a more general class, for
instance by introducing an X-type neutral point.

Hence it is necessary to leave the framework of equilibrium and stability
theory and consider nonlinear dynamics explicitly. Mathematically this
means leaving safe ground and embarking on unknown, perilous waters.
In addition some price has in general to be paid for practical tractabil-
ity. While equilibrium and stability theory can deal quantitatively with
geometrically complicated systems, nonlinear MHD studies are usually
restricted to obtain a qualitative picture in the simplest possible geometry.
The pioneering papers date back to the early seventies, when theorists
became aware of the importance of nonlinear effects. Among such papers
are, notably, Rutherford’s theory of the tearing mode evolution, Kadomt-
sev and Pogutse’s theory of vacuum bubbles, the nonlinear theories of the
ideal kink mode by Rosenbluth et al. and of the resistive kink mode by
Kadomtsev, Syrovatskii’s theory of current sheet formation and Taylor’s
theory of relaxed states, all of which have since been very influential. How-
ever, these nonlinear theories do not deal with truly dynamic processes but
consider slowly evolving equilibrium states or asymptotic states of systems
relaxed from some initial state under certain physical constraints. By con-
trast genuine dynamics is considered in a different line of approach, that
of fully developed MHD turbulence. In the case of turbulence, nonlinear
theory becomes tractable by applying statistical averaging together with
some closure assumption. Here work started with Kraichnan’s paper on
the Alfven effect in the sixties and a number of fundamental contributions,
notably by Frisch, Montgomery and Pouquet, in the seventies.

For more general processes, however, numerical computations become
the major tool, a trend observed in many branches of physics. In fact
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the computational approach has reached a new dimension, which can be
called computational theory. Fifty years ago a problem in fluid dynamics
was considered as solved if the result could be expressed in terms of
tabulated functions, twenty-five years ago if it could be reduced to an or-
dinary differential equation. With present-day supercomputers the partial
differential equations for many two-dimensional fluid dynamic problems
can be solved “exactly” for interesting Reynolds numbers and arbitrary
boundary conditions. Moreover by performing a series of computer runs
with different values of the externally given parameters scaling laws can
be obtained. It appears that a problem should be considered solved if
“exact” numerical solutions are available to provide scaling laws in a
certain parameter regime, and when a basic physical mechanism is found,
i.e. when the behavior of the system is “understood”. This is the realm
of computational theory. It might seem little in view of the beauty of
exact analytical results; it should, however, be compared with the actually
achievable, highly approximate analytical approaches often encountered.
Since such approximations tend to be made more on grounds of conve-
nience and feasibility than of mathematical rigor, they should be guided
by the “exact” results obtained by relevant numerical simulation. Inciden-
tally, the latter term, frequently used, is somewhat misleading. In fact one
should distinguish between “physics simulations” and “real-world simula-
tions”. While the former simply provide an exact solution of some usually
time-dependent model partial differential equations (exact within known
and controllable discretization errors), the latter often incorporate many
different, possibly equally important effects (e.g. in tokamak transport
simulations), or complicated geometry (e.g. in stellerator development). In
this book the term ‘simulation’ normally refers to the first category.

In a field such as nonlinear MHD, where no unifying methodical
framework exists, the selection of topics is necessarily somewhat arbitrary,
biased by personal taste. 1 have tried to concentrate more on the basic
effects rather than include a broad scale of individual investigations. The
book consists of three major parts, an introductory part, chapters 24,
the main part treating three different aspects of nonlinear MHD, chapters
5-7, and an applications part, chapters 8-10.

Chapter 2 introduces the MHD equations in a macroscopic way, without
recourse to concepts of kinetic theory. The ideal invariants play a crucial
role, in particular magnetic helicity. We also derive a simplified set of
equations for strongly magnetized plasmas, called reduced MHD, which
has proved to be very convenient for nonlinear MHD studies. Finally the
important dissipative effects are discussed, the magnitudes of which are
measured by the corresponding Reynolds and Lundquist numbers.

In order to make the book self-contained, chapters 3 and 4 give an
outline of the classical topics of MHD theory, equilibrium and stabil-
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ity theory. Chapter 3 derives the general two-dimensional equilibrium
equation, discusses some exact two-dimensional solutions often used as
paradigms, and gives a brief overview of numerical methods to compute
general equilibria in 2-D and 3-D.

The linear stability problem is addressed in chapter 4. Since the normal
mode spectrum can analytically only be obtained for 1-D configurations,
the energy principle has become the main tool for a qualitative stability
analysis of more complicated systems. We first discuss the ideal MHD
stability of a linear pinch and the modifications which arise in the toroidal
case. Allowing for finite electrical resistivity significantly broadens the
class of possibly unstable plasma motions. Two prototypes of resistive
instabilities are treated in more detail, the tearing instability and the
resistive kink instability, corresponding respectively to ideally stable and
marginal unstable modes.

After these preliminaries the reader is prepared to enter the world of
nonlinear processes. Throughout the book the emphasis is on relatively
slow, essentially incompressible processes, excluding fast shock phenom-
ena. Chapter 5 considers the laminar nonlinear evolution of MHD insta-
bilities, where the system remains within the geometry defined by the most
unstable mode, e.g. helical symmetry in the case of a kink mode in a cylin-
drical pinch. First the quasi-linear approximation is introduced, which
provides a practical estimate of the instability saturation level in cases of
a nonsingular final state. Then two rare examples of analytically solv-
able models are presented, the theory of vacuum bubbles resulting from
external kink modes in an unsheared plasma cylinder, and the theory of
the saturation of the ideal internal kink mode. These ideal MHD models
are, however, of limited practical significance, since dynamical processes in
magnetized plasma are strongly affected by the presence of finite resistivity
even if the latter is numerically very small. Here the nonlinear tearing
mode with its different variants is probably the most important individual
MHD process, which is hence discussed in some detail, in particular the
universal small-amplitude phase, called the Rutherford regime, and the
saturation properties depending on the geometry of the configuration, the
current distribution and the transport properties of the resistivity.

Magnetic reconnection, which in a stricter sense means the fast dynamic
decoupling of plasma and magnetic field, can be called the essence of
nonlinear MHD. Also in the case of ideal instability reconnection usually
determines the nonlinear evolution. In magnetized plasmas reconnection
takes place in current sheets. Chapter 6 first introduces the Sweet-Parker
model, which incorporates the basic properties of dynamic current sheets.
Reconnection theory has long been dominated by two schools of thought,
Petschek’s slow shock model and Syrovatskii’s theory of current sheet
generation. While the former has, however, been shown in recent years
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to be invalid in the limit of high conductivity, for which it had been
devised, the latter has been verified in detail by numerical simulations
and in fact describes in a simple, elegant way a fundamental effect in
the dynamics of highly conducting magnetized fluids. Though dynamic
current sheets are significantly more stable than static ones they become
tearing-unstable at sufficiently high Reynolds number, above which no
stationary reconnection configurations appear to exist. As examples three
well-known systems involving reconnection are discussed, the coalescence
of magnetic islands, the nonlinear evolution of the resistive kink instability
and the dynamics of plasmoids. While most of the chapter is restricted
to two-dimensional systems, the final two sections discuss some aspects of
three-dimensional reconnection.

Chapter 7 deals with fully developed turbulence, the most probable
dynamical state at high Reynolds numbers. The absolute equilibrium
distributions of truncated nondissipative systems provide insight into the
properties of nonlinear mode interactions which determine the cascade
directions in dissipative turbulence. In contrast to the hydrodynamic
(Navier-Stokes) case MHD turbulence exhibits strong self-organization
processes, which are connected with the existence of inverse cascades.
These processes are selective decay leading to large-scale, static, force-
free magnetic states, and dynamic alignment of velocity and magnetic
fields. Also, spectral properties in MHD turbulence are different from
those of hydrodynamic turbulence. The only quantitative approach for
MHD turbulence theory developed to date is based on closure theory,
a tractable version being the eddy-damped, quasi-normal Markovian ap-
proximation. Turbulent energy dissipation is discussed, in particular in
2-D MHD systems, which differs fundamentally from the behavior in
2-D hydrodynamics. An important aspect of modern turbulence theory is
intermittency. Several intermittency models developed for Navier-Stokes
turbulence are introduced and some results for MHD turbulence are
given. Finally the magnetoconvection in primarily unmagnetized fluid
turbulence is discussed, which is intimately connected with the turbulent
dynamo effect.

The remaining chapters are devoted to three important applications
in laboratory and astrophysical plasmas. Chapter 8 discusses the MHD
properties of disruptive processes observed in tokamaks. The sawtooth
oscillation is a periodic relaxation process restricted to the central region
of the plasma column. Observations show beyond reasonable doubt
that the sawtooth collapse is connected with the m = 1,n = 1 kink
mode. However, Kadomtsev’s model assuming full reconnection of the
helical magnetic flux by the resistive kink mode, which had long been the
generally accepted sawtooth model, does not seem to apply to present-day
large-diameter hot tokamak plasmas, characterized by very large values
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of the Lundquist number S. Observed time scales seem to be too fast
to allow full reconnection. In fact, measurements of the central safety
factor indicate that full reconnection does not take place and that the
thermal energy release is caused by some effect which is different from the
convective process in Kadomtsev’s model. Numerical simulations, being
still confined to rather low S-values, have not been able to elucidate the
high S-value behavior. In addition the fast onset of the collapse is still
poorly understood. The major disruption in a tokamak occurs accidentally,
when plasma parameters, in particular current and pressure, exceed certain
operational limits, the density limit being effectively a current limit due
to transport processes. The disruption proper appears to be a fast MHD
process caused by the nonlinear instability of a large amplitude m = 2
tearing mode, which leads to a turbulent state. It can be described as an
interaction of modes of different helicity, notably (m,n) = (2,1),(1, 1), (3,2),
which gives rise to an anomalous resistivity. The third type of disruptive
process is again a quasi-periodic relaxation oscillation, affecting the outer
plasma region, hence the name ‘edge-localized mode’ (ELM). It occurs
primarily in divertor plasmas in the high-confinement (H-) regime, where
owing to a local transport barrier steep pressure gradients are generated
at the plasma edge. The ELM can be associated with high-m ballooning
modes. A common feature observed in all three types of disruptive events
is that of a two-stage process, consisting of a coherent precursor and a
more rapid turbulent relaxation phase.

The reversed-field pinch (RFP) considered in chapter 9 is particularly
rich in MHD effects. Because of the low value of the safety factor
the RFP is prone to instability in contrast to a tokamak plasma and
hence tends to relax to the minimum energy configuration with a reversed
toroidal field predicted by Taylor’s theory, which we discuss in some
detail. RFP plasmas are usually maintained in a quasi-stationary state,
where turbulent relaxation to the minimum energy state is counteracted
by resistive diffusion. The process of transforming the externally supplied
poloidal field into internal toroidal field is called the RFP dynamo effect.
The simplest theoretical model is a helical ohmic state, where a helical
stationary flow balances resistive diffusion. Such stationary dynamo states
are not forbidden by Cowling’s antidynamo theorem, which applies only
to the more restricted case of axisymmetry. In general, however, such
stationary states are unstable with respect to modes with different helicities.
The resulting turbulent behavior can only be investigated by numerical
simulation.

Finally, chapter 10 deals with solar flares, which are among the most
spectacular explosive events observed in astrophysical plasmas. Flares
result from a sudden release of magnetic energy and are hence MHD pro-
cesses, though a treatment of the different channels of energy dissipation
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which give rise to the wealth of observed phenomena is outside the scope
of this book. We first discuss the process of magnetic field generation in
the solar convection zone and the typical magnetic configurations emerg-
ing into the corona. Flares appear over a wide energy range, from the
very weak microflares or even nanoflares forming a background noise re-
sponsible for the continuous coronal heating, to the macroflares occuring
sporadically. The latter are loosely classified as simple loop or compact
flares and two-ribbon flares, the largest events. The current MHD models
are presented for flares of both types.

A few remarks concerning the notation used in the book may be in
place. I have tried as much as possible to stay within the notations used
in the current literature. Occasionally conflicts arise, for instance for the
energy which is usually denoted by W in stability theory, but by E in
turbulence theory. I follow such conventions, but give an explicit warning.
The equations are written in SI units, which seem to be the most practical
for macroscopic plasma physics. However, to simplify notation I will set
the vacuum permeability o = 1. If necessary po can be reintroduced at any
stage by a simple dimensionality consideration. In addition, since most
of the MHD processes considered are incompressible, a homogeneous
density distribution p is often assumed, setting p = 1. In these units the
magnetic field B has the dimension of a velocity, the corresponding Alfven
velocity v4 = B/,/op, and v4 and B will be used interchangeably.



